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A theoretical study of the colloidal interaction between two identical fluid drops~i.e., gas bubbles! forms the
basis for the proposal of a possible mechanism by which salt inhibition of bubble coalescence occurs. Recent
speculations attempting to describe this phenomenon were founded on the assumption that electrostatic double-
layer forces are not relevant. In complete contradiction to this claim, the present results indicate that double-
layer forces between the deformable bubble interfaces infer precisely the same behavior observed with salt
addition: bubble coalescence is predicted to occur in water or in low electrolyte solutions, but is hindered once
the electrolyte concentration is increased sufficiently. In other words, low-salt solutions favor large bubbles,
high-salt solutions favor small bubbles. In this symmetric system, assuming fixed but physically appropriate
conditions, a given bubble size determines a critical electrolyte concentration above which coalescence is not
possible.@S1063-651X~96!05212-9#

PACS number~s!: 82.70.Rr, 68.15.1e, 68.10.2m

INTRODUCTION

In the recent literature there has appeared a resurgence of
interest in the peculiar phenomena of gas bubble coalescence
in aqueous media@1–6#. Despite being familiar to workers in
the flotation field@7#, the fact that salt solutions under suffi-
cient concentrations will increase the stability of bubble dis-
persions has eluded quantitative explanation for an embar-
rassing length of time. Although speculation on the precise
mode of action taken by salts in hindering coalescence has
proceeded nonetheless@1–6,8,9#, agreement between au-
thorities in this field has not yet been reached. One early
proposal that viscosity changes in the aqueous medium af-
fecting hydrodynamic forces between colliding bubbles has
been dismissed as a likely mechanism without contention
@2#, while recently some weak correlation has been noted
betweenthosesalts that both inhibit coalescence and induce
surface tension changes@4–6#. However, no physical mecha-
nism was proposed. In a remarkably simple experiment
Craig, Ninham, and Pashley@1,2# have added to the puzzle
the latter feature that some salts do in fact have negligible
influence relative to water~Ref. @2# documents a large vari-
ety of different salts tested!.

In their summary, Craig, Ninham, and Pashley@1,2# con-
clude that their findings ‘‘can only be explained by the local
influence of ions on water structure in a way related to the
hydrophobic force’’@10,11#. A long-range attractive force is
conjectured necessary in order to oppose any repulsive hy-
drodynamic forces existing between colliding bubbles so that
coalescence can occur in pure water. Local water structuring
is conjectured in order to distinguish between salt species in
reducing this hydrophobic force in salt concentrated solu-
tions. In deducing the existence of a long-range attractive
force, these authors have superposed all their observations.
Prominent among these is the different attitude taken by dif-

ferent salts, as well as sugars, to coalescence prevention. The
authors also state that electrical double-layer forces cannot
be responsible for coalescence inhibition ‘‘because increased
salt concentration is supposed to screen double layer repul-
sion not increase it’’@2#.

Because of this persistent quandary it would seem an op-
portune occasion to reason once more through some of the
known facts about coalescence hindrance by salts. It has
been found that for those salts that do inhibit coalescence the
effectivity behavior scales with the Debye parameterk
5A( izi

2e2ciNA /«0« rkT ~herezi is the valency of thei th ion
type with concentrationci , e is the unit electron charge,T is
temperature,k is Boltzmann’s constant,NA is Avagadro’s
number,«0 is the permittivity of real space, ander is the
relative permittivity of the electrolyte!. This is very strong
evidence for and very characteristic of electrostatic double-
layer phenomena@12#. In comparison, that some sugars also
affect coalescence should be considered carefully since the
extent of their influence is markedly different from that of
salts@2#. These results might very well suggest that asepa-
rate and less effective mechanism is at work. It is somewhat
surprising that Craig, Ninham, and Pashley@2# rule out an
electrostatic effect; their results indeed would be interpreted
as an increased repulsive force with added salt, which they
claim contradicts classical Derjaquin-Landau-Verwey-
Overbeek~DLVO! theory. In fact, as is well known to stu-
dents of electrostatic double-layer theory, for the case of the
constant potential surfaces under scrutiny, the electrostatic
double-layer force is reduced in range asymptotically~the
exponential decay length scales inversely with concentra-
tion!, but increaseswith salt concentration when the surfaces
are separated by finite distances~see Fig. 1 and Ref.@12#!, all
other things equal. Consequently, it is not at all clear to this
author that a prosaic mechanism of electrostatic origin
should yet be ruled out.

In searching for an explanation for the salt effect it would
seem appropriate at this point to readdress the problem in the
form of two questions, rather than one as Craig, Ninham, and
Pashley have intimated. Rather than seek a mechanism that
accounts for the inhibition effect of some salts and the indif-
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ference of others, more progress might be made if one could
first establish a possible fundamental mechanism for salt in-
hibition and subsequently question why certain specific salts
do not conform to the general theory. In this paper we shall
take this avenue of approach and address the first aspect.

The reader might raise objections to the results displayed
in Fig. 1, pointing out that the surface potential value as-
sumed in the calculation is not appropriate for the gas-water
interface and a van der Waals attractive force has not been
included. However, the calculations have also assumed two
charged planar rigid surfaces. For relevance to bubble inter-
actions, all appropriate features of the bubble surface must be
taken into account.

In a recent communication examining the fundamental
nature of colloidal interaction between a fluid drop and a
rigid macroscopic solid@13#, it was found that, as a function
of surface separation, repulsive double-layer interactions ex-
hibit a divergence from classical DLVO behavior appearing
suddenly at a critical separation as a result of deformation of
the fluid interface. The surface conditions studied were of
constant charge. However, as stated above, the air-water in-
terface is generally accepted to be constant potential. Conse-
quently, to make any valid statements on how two bubbles
interact we must first make the appropriate adjustment to the
electrostatic boundary condition.

As we shall see, the physical difference between the con-
stant charge and constant potential systems has important
ramifications for deformable fluid interfaces. We have al-
ready explored some of these implications in more generality
in a recent paper on fluid-solid interactions@14#. However,
we devote this paper to the specific case of identical fluid
drops, i.e., gas bubbles, immersed in an electrolyte, in an
attempt to explore the possibility of a mechanism for bubble
coalescence inhibition based on classical colloidal interac-
tion theory.

In the next section, we outline briefly the theoretical pro-
cedure required to calculate the force between two bubbles.

Results of these calculations are given in the last section.
There we also discuss how these results reflect on the bubble
coalescence phenomena, expanding on the above discussion.

A THEORETICAL MODEL OF BUBBLE INTERACTIONS

The problem is one of solving for the interfacial shape of
two fluid drops or gas bubbles interacting through surface
forces. Fluid densities do not enter into discussion here as we
shall ignore the force of gravity. Thus the fluids concerned
could be either gas or liquid, in general. Electrothermody-
namic surface stresses that are set up influence the droplet
shapes. Neither the surface forces nor the position of the
interfaces that determine them are knowna priori. Conse-
quently, the task at hand is highly nonlinear: the magnitude
of the stress and the location of the surfaces must be deter-
mined self-consistently. Although the general approach has
been described in some detail in other papers@13–15#, we
present a summary here.

By symmetry we need only solve for the position of one
surfacez(r ) ~see Fig. 2!, which is a solution of the aug-
mented Laplace equation@16#

gS z9~r !

~11z82!3/2
1

z8~r !

rA11z82
D 52DP01PDLVO@D0

22z~r !#. ~1!

The aforementioned gravity or bouyancy term, which should
normally appear in Eq.~1! because of density differences, is
ignored for simplicity~its presence serves only to reduce the
symmetry!.

We make two simplifying approximations. The first is one
assumption made in the familiar Derjaguin approximation
valid for bodies of low curvature at relatively small separa-
tions @17#: the normal stress due to colloidal surface forces
PDLVO as a function ofr is approximated by the pressure
between equivalent plane parallel surfaces at the correspond-
ing surface separationD(r )5D022z(r ) @z(r ),0; Fig. 2#.
Second, the value ofDP0, the pressure excess, a value set by
a fixed bubble volume constraint, is presumed to be constant
throughout the interaction and equal to its value in the ab-
sence of surface forces

FIG. 1. Plots of repulsive double-layer forces based on Eqs.~4!
and~7!, between two identically charged rigid planes assuming con-
stant surface potential conditions. The relative dielectric permittiv-
ity of the medium is taken to be that of water, 72.8. The surface
potential is fixed atc05100 mV. Molar concentrations of 1025M ,
1024M , and 1023M of a univalent electrolyte were used in the
calculations; corresponding curves have been labeled.

FIG. 2. Schematic figure depicting the geometry of the two-
bubble problem. Coordinate axes and variables are shown.
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DP05
2g

R
, ~2!

whereR is the radius of an undeformed sphere of gas with
the correct volume. The first assumption is generally accept-
able provided that the separation between the interacting sur-
faces is much smaller than the mean radius of curvature of
the two bodies. The second assumption has not yet been
validated analytically. However, as we know that surface
forces do not induce any significantmacroscopicchanges to
droplet shapes@13–15#, we do not expect this assumption to
be unreasonable. In ongoing work we investigate the effect
of avoiding these two approximations@18#. Except under
very-high-salt conditions, the normal stress due to colloidal
forces is reasonably well approximated by a simple superpo-
sition of electrical double-layer and van der Waals interac-
tions @19#

PDLVO5PvdW1PEDL . ~3!

For a univalent electrolyte~z51! at a number density con-
centrationn, the double-layer pressure between two infinite
flat plates is given by

PEDL52nkT@cosh~ebcs!21#, ~4!

wherecs5c at the symmetry plane andc is the solution of
the nonlinear Poisson-Boltzmann equation

ebc9~z!5k2sinh~ebc! ~5!

subject to the boundary conditions of fixed surface potential
c0 at the bubble surfaces and of mirror symmetry:

c~surface!5c0 , c8~symmetry plane!50. ~6!

An analytic solution exists, expressed in terms of elliptic
functions@20,21#; its form is

sinh@ebc~x!/2#5sinh@ebc~0!/2#nc~kx/j,j!, ~7!

where x is the coordinate variable measuring the distance
from one surface to the other. The originx50 is placed at the
symmetry plane~Fig. 2!. j5sech@ebc~0!/2# is the modulus
of the elliptic function nc~z,j! @22#.

Between two like bodies separated by a third continuous
medium there exists an attractive van der Waals force. Per
unit area between planar bounded continua, this force has the
form

PvdW52
A

6pD~r !3
, ~8!

whereA is the Hamaker constant andD(r )5D022z(r ).
The net force between the bubbles is defined as the in-

duced surface stress integrated over the symmetry plane

F52pE
0

`

PDLVO@D~r !#rdr . ~9!

Solving Eq.~1! for the profile shapez(r ) can be effectively
executed directly untilz8(r ) becomes undefined. It has been
found @23#, however, that integrating Laplace’s equation to

obtain the entire drop shape can be achieved most easily after
the profile is parametrized with respect to its slopedz/dr.
Here we do not assume the drops to be supported by any
solid interface as was the case in other work@13–15#. Thus,
using the parametrizationdz/dr5tanf, so thatz5z(f) and
r5r (f), we can rewrite Eq.~1! as two first-order differen-
tial equations

dz

df
5

2r sinf

rD`/g1sinf
, ~10!

dr

df
5

2r cosf

rD`/g1sinf
, ~11!

with D`52DP01PDLVO . Boundary conditions for~10! and
~11! are

dz

df
50,

dr

df
5

2g

DP0
at z50 or at f50. ~12!

Equations~10! and~11! can be integrated numerically using
boundary conditions~12! for the full range offe~0,p!. Re-
sults shown below were obtained using this system of equa-
tions, solved by the Runge-Kutta technique, and subsequent
force integration@Eq. ~9!# performed using Gaussian quadra-
ture.

In the numerical results shown in Figs. 3–6, we have
utilized a single realistic value of surface potentialc05234
mV taken from the literature@24,25#. However, we are aware
of other measured values@26# and reports of different surface
potentials for bubbles of different size@27#. Different surface
potentials will not affect the qualitative behavior described in
this paper. They will, however, affect the quantitative predic-
tions. To achieve the best quantitative accuracy calls for a
greater focus of attention on the experimental determination
of bubble potentials. The Hamaker constant is given the
value ofA53.7310220 J and can be assumed constant with
respect to salt at these concentrations@17#. The surface ten-
sion of the air-water interface is kept constant atg572.8
mN/m. For the salt concentrations studied variations in sur-
face tension are not expected to occur@6#.

DEMONSTRATION OF SALT-INDUCED
REPULSIVE FORCES

A modification to the charge boundary condition—
constant charge to constant potential—is misleadingly trivial.
As our early remarks indicate, it actually leads to markedly
different physical behavior at short separations. Under con-
stant charge conditions, the electroneutrality constraint
forces a requisite number of surface counterions to remain
present in the vanishing gap between two similarly charged
surfaces in order to balance their charge, while any excess
salt tends to favor the bulk. A fixed two-dimensional density
of counterions leads to a diverging three-dimensional den-
sity, which, according to the contact theorem@17#, implies
that the pressure between the plates diverges@28#, a conse-
quence of entropy considerations. In contrast, when two
identical planar surfaces interact at constant potential, their
surface charges, which now vary with separation, tend to
zero by symmetry. Consequently, there is no electroneutral-
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ity constraint on the counterions in the system, which gives
greater freedom for transfer to the bulk in preference to the
gap; entropy can be gained in this process. The contact theo-
rem ~which is still valid! implies that the pressure tends at
most to a constant and thus the interaction free energy to a
constant linearly with separation. This constant will now de-
pend on the amount of electrolyte present. In the case of
constant surface charge, therefore, the double-layer stress
acting on a fluid interface increases without bound with de-
creasing separation, while in the latter case the stress attains
a finite maximum at zero separation, monotonically depen-
dent on bulk concentration. From this one can immediately
identify the error made by Craig, Ninham, and Pashley@2#.
For constant charge surfaces, in the limit of small separations
the double-layer pressure diverges at a fixed rate,indepen-
dent of bulk salt concentration. At large distances the decay
of the force becomes more rapid with added salt. From these
two limiting features and the fact that the force is a mono-
tonic function of separation, one can deduce that the force is
reduced everywhere by salt addition. The statement made by
Craig, Ninham, and Pashley thus refers to constant charge
surfaces, but is not pertinent to the case of constant potential,
bubblesurfaces.

The shapes of immiscible fluid, i.e., bubble, surfaces are
determined by a balance of surface pressures acting on the
two sides of the fluid interface and the interfacial tension of
that interface. For finite volume gases in isolation in a con-
tinuous liquid, the gas pressure is in excess, balanced by the
Laplace pressure Eq.~2!. Obviously, in the presence of an
external source of stress changes to the interfacial curvature
result. In the present case, the combination of a repulsive
electrical double layer and an attractive van der Waals force
is such a source of external stress for which curvature
changes have consequences for interacting bodies.

What is relevant here is the balance between the addi-
tional external stresses and the excess gas pressure difference
under ambient conditions. In the absence of van der Waals
forces, one can employ the comparison betweenDP0 and the
maximum in the double-layer pressure found at contact~Fig.
1!, as a qualitative guide to determining the interaction be-
havior of the two bubbles. If the maximum double-layer sur-
face force is lower thanDP0, then limited deformation of the
fluid interfaces occurs. For a given constant surface tension
the local radius of curvature at the point where the axis of
symmetry intersects the bubble surface increases from
2g/DP0 to 2g/D`, where D`5DP02PDLVO

max . For a low
enough surface potential the repulsive force is not suffi-
ciently strong to prevent the surfaces from coming into con-
tact. However, what Fig. 3 makes explicit is that the repul-
sive double-layer stresscan rise to a sufficient magnitude
when the salt concentration is increased~the feature demon-
strated in Fig. 1!, to induce an effective force barrier between
the bubbles as a function of their minimum separation, pre-
venting any further approach. The barrier is, of course, a
consequence of bubble deformability, which impels exposure
of a larger area of bubble surface to the repulsive interaction,
at essentially the same separation. We have considered fluid
surface deformation in more detail elsewhere@13–15#. How-
ever, the reader will readily agree that this feature of defor-
mation, inassociation withthe behavior of the double-layer
force depicted in Fig. 1, is sufficient to account for bubble

coalescence inhibition, far more convincingly thanonly the
double-layer behavior itself. The double-layer behavior is in-
cidental, deformation is effectual. Here we see in theory pre-
cisely that feature found in experiments, namely, that in-
creased salt concentration leads to a significant repulsive
force. This is the key point we impart in this paper.

Of course, between two bubbles interacting across an
aqueous medium there is always an attractive dispersion

FIG. 3. Plots of the total~repulsive! double-layer force between
two identical, charged fluid drops or bubbles under constant surface
potential conditions. The curves are based on Eq.~9! with the sur-
face pressure containing only the repulsive double-layer contribu-
tion Eq.~4!. The abscissa denotes the minimum separation between
the two drop surfacesD0. The relative dielectric permittivity of the
medium is taken to be that of water, 72.8. The surface potential is
fixed at a literature value for the air-water interfacec05234 mV
@24,25#. Molar concentrations of 1025M ~s`524.2231025 e/Å2!,
1024M ~s`521.3331024 e/Å2!, 2.531024M ~s`522.1131024

e/Å2!, and 1023M ~s`524.2231024 e/Å2! of a univalent electro-
lyte were used in the calculations; corresponding curves have been
labeled. For this figure an ambient pressure difference of
DP051000 Pa has been used, corresponding, assuming a surface
tension ofg572.8 mN/m, to a bubble radius of 0.145 mm.

FIG. 4. Same as for Fig. 3, except that the surface pressure now
contains both the repulsive double-layer contribution Eq.~4! and
the attractive van der Waals force Eq.~8!. The literature value of
the Hamaker constant is used:A53.7310220 J @17#.
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force. In Fig. 4 we have included a nonretarded and un-
screened van der Waals force in the Hamaker approximation,
using the literature value for this system’s Hamaker constant
@17#. For the rest of the discussion, it is appropriate as well as
useful, now that dispersion forces are present, to consider
contact being synonymous with coalescence.

Between rigid planar bodies, the van der Waals force has
the obvious effect of introducing a repulsive maximum at
some finite separation rather than at contact. At shorter dis-
tances the total surface force rapidly becomes attractive.
What is important for the present discussion is that this new
peak is substantially lower than the maximum found with
constant potential double-layer forces alone. It is not difficult
to infer the consequences of this. Obviously, under otherwise
identical conditions, deformation is reduced and the effec-
tively infinite barrier is deferred to higher concentrations.
Yet it is important still to recognize that in these latter cases,
although a net attraction is present in principle, it is not ex-
periencedin practice, as deformation of the fluid surfaces
occurs too readily in competition with any separation de-
crease.

Whether the barrier appears at all will depend upon the
ambient pressure difference and salt concentration. Recall
that for a constant surface tension a given value ofDP0
corresponds to a given bubble size, via Eq.~2!. In Fig. 5,
shown are the total interaction vs minimum separation re-
sults for a larger bubble. Given the statements above, it is not
surprising that the effective barrier appears at a lower salt
content compared to the case of Fig. 4. At an arbitrary, fixed
salt concentration the total force behavior can therefore ap-
pear very different for different bubble sizes. In Fig. 6 we
show the total force vs separation profile for the symmetric
system assuming different bubble radii. Above a critical
bubble size, set by this salt concentration, deformation of the
fluid interface once again dominates separation changes.
Only for small bubbles is contact, i.e., coalescence, possible.
Further variations in bubble size and electrolyte concentra-
tion, as well as uniform surface potential and uniform surface
tension, lead to qualitatively similar results, which by now
can be anticipated.

FINAL REMARKS

The continuum model employed is inadequate for a study
of salt-specific effects. This has proved to be a source of
frustration that has hampered workers in the classical colloi-
dal force field, who have yet to understand completely the
complex molecular interaction between water, ions, and sur-
faces and so understand what happens close to an interface or
between surfaces@29#. Considerations of bare ion size, the
molecular nature of water, and the consequent hydration
properties of specific ions are all features that are conse-
quently absent from the present model. Furthermore, no ac-
count can be taken of any variation in surface tension with
bulk electrolyte concentration@4–6# or more importantly any
high-order, self-consistent change in surface tension that
may occur as a function of surface separation@30#. Although
it is not certain that such effects will occur at the concentra-
tions studied here, it is correct, nevertheless, to point them
out for possible future examination.

Notwithstanding these limitations, it is gratifying to know
that the model calculations have sufficient validity to deduce
a number of important features. Foremost is the aforemen-
tioned salt-induced repulsion. Other things being equal, in-
creases in salt lead to increased electrostatic repulsion be-
tween interacting bubbles, which eventually, because of
surface deformation, induces an effective repulsive barrier
that prevents the bubbles from attaining a primary force
minimum and presumably coalescence. Furthermore, results
shown in Fig. 6 suggest that high salt concentrations infer a
limit to the size of bubbles that can achieve coalescence.
That is, presuming that large bubbles form by the coales-
cence of smaller bubbles, the theory predicts that there is a

FIG. 5. Same as in Fig. 4, except that an ambient pressure dif-
ference ofDP05500 Pa has been used. Assuming a surface tension
of g572.8 mN/m, this corresponds to a bubble radius of 0.291 mm.

FIG. 6. Plots of the total force between two identical, charged
fluid drops or bubbles under constant surface potential conditions.
The curves are based on Eq.~9! with both repulsive double-layer
and attractive van der Waals contributions. The abscissa denotes the
minimum separation between the two drop surfacesD0. The rela-
tive dielectric permittivity of the medium is taken to be that of
water, 72.8. The Hamaker constantA53.7310220 J. The surface
potential is fixed at a literature value for the air-water interface
c05234 mV @24,25#. A fixed molar concentration 531024M
~s`523.031024 e/Å2! of a univalent electrolyte has been used. In
this figure four different values of ambient pressure difference are
considered:DP05100, 500, 1000, and 2000 Pa, corresponding to
bubble radii of 1.45, 0.291, 0.145, and 0.073 mm, respectively.
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limit to the maximum bubble size thus formed. Based on the
information shown in Figs. 4–6, this limiting bubble size is
predicted to decrease with increasing salt concentration.
Both of these features predicted by the model are character-
istically found in experiments. What is still lacking, how-
ever, is quantitative agreement between the theoretical pre-
dictions of critical salt concentrations and the experimental
observations of the amount of salt needed to inhibit coales-
cence: a discrepancy of some two orders of magnitude. One
obvious difficulty is knowing the exact surface potential to
use. Agreement between theory and experiment would ne-
cessitate a surface potential value of the order of210 mV.
At low salt concentrations, this would suggest a very weak
electrical double-layer force, with the total interaction domi-
nated by the long-range dispersion force, thus accounting for
coalescence in the case of pure water.

Most, if not all, of the recent experimental studies of
bubble interactions have been conducted in dynamic circum-
stances. This complicates matters greatly since nontrivial hy-

drodynamic forces are present@31#. Some indications of
equilibrium effects can be surmised from the interesting ob-
servations of Hofmeier, Yaminsky, and Christenson@5#, who
describe the mechanisms of bubble ‘‘feeding’’ in pure water
and ‘‘bouncing’’ in salt solutions during the emergence of a
bubble stream from a single capillary. In our view, these
features are undoubtedly connected to the phenomena de-
scribed herein. However, for true assurance of compatibility
with the mathematical model, equilibrium measurements
must still be performed.
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